The shift bound for cyclic, Reed-Muller and geometric Goppa codes

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

Abstract

We give a generalization of the shift bound on the minimum distance for cyclic codes which applies to Reed—Muller and algebraic-geometric codes. The number of errors one can correct by majority coset decoding is up to hdlf the shift bound.
Original languageEnglish
Title of host publicationArithmetic, Geometry and Coding Theory
EditorsG.R. Pellikaan, M. Perret, S.G. Vladut
Place of PublicationBerlijn
PublisherWalter de Gruyter GmbH
Pages155-174
ISBN (Print)3-11-014616-9
Publication statusPublished - 1996
Eventconference; AGCT-4, Luminy, June 28-July 2, 1993 -
Duration: 1 Jan 1996 → …

Conference

Conferenceconference; AGCT-4, Luminy, June 28-July 2, 1993
Period1/01/96 → …
OtherAGCT-4, Luminy, June 28-July 2, 1993

Fingerprint

Dive into the research topics of 'The shift bound for cyclic, Reed-Muller and geometric Goppa codes'. Together they form a unique fingerprint.

Cite this