Abstract
We introduce the monic rank of a vector relative to an affine-hyperplane section of an irreducible Zariski-closed affine cone $ X$. We show that the monic rank is finite and greater than or equal to the usual $ X$-rank. We describe an algorithmic technique based on classical invariant theory to determine, in concrete situations, the maximal monic rank. Using this technique, we establish three new instances of a conjecture due to B. Shapiro which states that a binary form of degree $ d\cdot e$ is the sum of $ d$ $ d$th powers of forms of degree $ e$. Furthermore, in the case where $ X$ is the cone of highest weight vectors in an irreducible representation--this includes the well-known cases of tensor rank and symmetric rank--we raise the question whether the maximal rank equals the maximal monic rank. We answer this question affirmatively in several instances.
Original language | English |
---|---|
Pages (from-to) | 2481-2505 |
Journal | Mathematics of Computation |
Volume | 89 |
Issue number | 325 |
DOIs | |
Publication status | Published - 2020 |