The impact of water content and mixing time on the linear and non-linear rheology of wheat flour dough

M. Meerts, R.M. Cardinaels, F. Oosterlinck, C. Courtin, P. Moldenaers

Research output: Contribution to journalArticleAcademicpeer-review

14 Citations (Scopus)
268 Downloads (Pure)

Abstract

The viscoelastic properties of wheat flour dough are known to be very sensitive to small changes in water content and mixing time. In this study the simple scaling law originally proposed by Hibberd (1970) [Rheol. Acta 9, 497-500] to capture the water dependency of the dynamic moduli in small amplitude oscillatory shear, was also applied to creep-recovery shear tests and extensional tests. The scaling law turns out to be valid not only in the linear region, but to a certain extent also in the non-linear region. At sufficiently high water levels, a ‘free’ water phase exists in dough, which attenuates the starch-starch and gluten-starch interactions. Dough characterisation after different mixing times shows that overmixing may cause a disaggregation or even depolymerisation of the gluten network. The network breakdown, as well as the subsequent (partial) recovery, are clearly reflected in the value of the strain-hardening index, for which a maximum is reached at a mixing time close to the optimum as determined with the Mixograph. Finally, the gluten proteins turn out to be much less susceptible to overmixing in an oxygen-lean environment, which demonstrates the significant role of oxygen in the degradation process.
Original languageEnglish
Pages (from-to)151-163
Number of pages13
JournalFood Biophysics
Volume12
Issue number2
DOIs
Publication statusPublished - 1 Jun 2017

Fingerprint Dive into the research topics of 'The impact of water content and mixing time on the linear and non-linear rheology of wheat flour dough'. Together they form a unique fingerprint.

Cite this