TY - JOUR
T1 - The Gaussian scale-space paradigm and the multiscale local jet
AU - Florack, Luc
AU - Romeny, Bart M. ter Haar
AU - Viergever, Max A.
AU - Koenderink, Jan J.
PY - 1996
Y1 - 1996
N2 - A representation of local image structure is proposed which takes into account both the image's spatial structure at a given location, as well as its deep structure, that is, its local behaviour as a function of scale or resolution (scale-space). This is of interest for several low-level image tasks. The proposed basis of scale-space, for example, enables a precise local study of interactions of neighbouring image intensities in the course of the blurring process. It also provides an extrapolation scheme for local image data, obtained at a given spatial location and resolution, to a finite scale-space neighbourhood. This is especially useful for the determination of sampling rates and for interpolation algorithms in a multilocal context. Another, particularly straightforward application is image enhancement or deblurring, which is an instance of data extrapolation in the high-resolution direction.
A potentially interesting feature of the proposed local image parametrisation is that it captures a trade-off between spatial and scale extrapolations from a given interior point that do not exceed a given tolerance. This (rade-off suggests the possibility of a fairly coarse scale sampling at the expense of a dense spatial sampling large relative spatial overlap of scale-space kernels).
The central concept developed in this paper is an equivalence class called the multiscale local jet, which is a hierarchical, local characterisation of the image in a full scale-space neighbourhood. For this local jet, a basis of fundamental polynomials is constructed that captures the scale-space paradigm at the local level up to any given order.
AB - A representation of local image structure is proposed which takes into account both the image's spatial structure at a given location, as well as its deep structure, that is, its local behaviour as a function of scale or resolution (scale-space). This is of interest for several low-level image tasks. The proposed basis of scale-space, for example, enables a precise local study of interactions of neighbouring image intensities in the course of the blurring process. It also provides an extrapolation scheme for local image data, obtained at a given spatial location and resolution, to a finite scale-space neighbourhood. This is especially useful for the determination of sampling rates and for interpolation algorithms in a multilocal context. Another, particularly straightforward application is image enhancement or deblurring, which is an instance of data extrapolation in the high-resolution direction.
A potentially interesting feature of the proposed local image parametrisation is that it captures a trade-off between spatial and scale extrapolations from a given interior point that do not exceed a given tolerance. This (rade-off suggests the possibility of a fairly coarse scale sampling at the expense of a dense spatial sampling large relative spatial overlap of scale-space kernels).
The central concept developed in this paper is an equivalence class called the multiscale local jet, which is a hierarchical, local characterisation of the image in a full scale-space neighbourhood. For this local jet, a basis of fundamental polynomials is constructed that captures the scale-space paradigm at the local level up to any given order.
U2 - 10.1007/BF00126140
DO - 10.1007/BF00126140
M3 - Article
SN - 0920-5691
VL - 18
SP - 61
EP - 75
JO - International Journal of Computer Vision
JF - International Journal of Computer Vision
IS - 1
ER -