Abstract
The patterning of graphene by a 30 kV Ga+focused ion beam(FIB) is studied by in-situ and ex-situRaman spectroscopy. It is found that the graphene surrounding the patterned target area can be damaged at remarkably large distances of more than 10 μm. We show that scattering of the Ga ions in the residual gas of the vacuum system is the main cause of the large range of lateral damage, as the size and shape of the tail of the ion beam were strongly dependent on the system background pressure. The range of the damage was therefore greatly reduced by working at low pressures and limiting the total amount of ions used. This makes FIB patterning a feasible alternative to electron beam lithography as long as residual gas scattering is taken into account
Original language | English |
---|---|
Article number | 2131101 |
Number of pages | 5 |
Journal | Applied Physics Letters |
Volume | 107 |
DOIs | |
Publication status | Published - 2015 |