Abstract
To reach a long term viable green hydrogen economy, rational design of active oxygen evolution reaction (OER) catalysts is critical. An important hurdle in this reaction originates from the fact that the reactants are singlet molecules, whereas the oxygen molecule has a triplet ground state with parallel spin alignment, implying that magnetic order in the catalyst is essential. Accordingly, multiple experimentalists reported a positive effect of external magnetic fields on OER activity of ferromagnetic catalysts. However, it remains a challenge to investigate the influence of the intrinsic magnetic order on catalytic activity. Here, we tuned the intrinsic magnetic order of epitaxial La0.67Sr0.33MnO3 thin film model catalysts from ferro- to paramagnetic by changing the temperature in situ during water electrolysis. Using this strategy, we show that ferromagnetic ordering below the Curie temperature enhances OER activity. Moreover, we show a slight current density enhancement upon application of an external magnetic field and find that the dependence of magnetic field direction correlates with the magnetic anisotropy in the catalyst film. Our work, thus, suggests that both the intrinsic magnetic order in La0.67Sr0.33MnO3 films and magnetic domain alignment increase their catalytic activity. We observe no long-range magnetic order at the catalytic surface, implying that the OER enhancement is connected to the magnetic order of the bulk catalyst. Combining the effects found with existing literature, we propose a unifying picture for the spin-polarized enhancement in magnetic oxide catalysts.
Original language | English |
---|---|
Article number | 011420 |
Number of pages | 13 |
Journal | Applied Physics Reviews |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Mar 2024 |
Funding
The support from the University of Twente in the framework of the tenure track start-up package is gratefully acknowledged. Raymond J. Spiteri and Robert J. Green acknowledge the support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program. Lucas Korol acknowledges the support from the NSERC CREATE to INSPIRE program. Hans Hilgenkamp , Thijs J. Roskamp, and Carlos M. M. Ros\u00E1rio acknowledge the support from the Dutch Ministry of Education, Culture, and Science (OCW), Program \u201CMaterials for the Quantum Age\u201D (QuMat), No. 024.005.006. Magnetocat acknowledges the funding from the European Union's, Horizon 2020 research and innovation program, under Grant Agreement No. 964972 (H2020-FETOPEN-2018-2019-2020-01). Chiara Biz, Mauro Fianchini, and Jose Gracia thank the SpinCat consortium. The authors thank Vadim Ratovskii for fruitful and critical discussion.