### Abstract

We apply the finite volume method to a spherically symmetric conservation law of advection-diffusion-reaction type. For the numerical flux we use the so-called complete flux scheme. In this scheme the flux is computed from a local boundary value problem for the complete equation, including the source term. As a result, the numerical flux is the superposition of a homogeneous flux and an inhomogeneous flux. The resulting scheme is second order accurate, uniformly in the Peclet numbers.

Original language | English |
---|---|

Title of host publication | Computational Science – ICCS 2008 (Proceedings 8th International Conference, Kraków, Poland, June 23-25, 2008) |

Editors | M. Bubak, G.D. Albada, van, J. Dongarra, P.M.A. Sloot |

Place of Publication | Berlin |

Publisher | Springer |

Pages | 651-660 |

Volume | 1 |

ISBN (Print) | 978-3-540-69383-3 |

DOIs | |

Publication status | Published - 2008 |

### Publication series

Name | Lecture Notes in Computer Science |
---|---|

Volume | 5101 |

ISSN (Print) | 0302-9743 |

## Fingerprint Dive into the research topics of 'The complete flux scheme for spherically symmetric conservation laws'. Together they form a unique fingerprint.

## Cite this

Thije Boonkkamp, ten, J. H. M., & Anthonissen, M. J. H. (2008). The complete flux scheme for spherically symmetric conservation laws. In M. Bubak, G. D. Albada, van, J. Dongarra, & P. M. A. Sloot (Eds.),

*Computational Science – ICCS 2008 (Proceedings 8th International Conference, Kraków, Poland, June 23-25, 2008)*(Vol. 1, pp. 651-660). (Lecture Notes in Computer Science; Vol. 5101). Springer. https://doi.org/10.1007/978-3-540-69384-0_70