### Abstract

Multirate time-integration methods [3–5] appear to be attractive for initial value problems for DAEs with latency or multirate behaviour. Latency means that parts of the circuit are constant or slowly time-varying during a certain time interval, while multirate behaviour means that some variables are slowly time-varying compared to other variables. In both cases, it would be attractive to integrate these slow parts with a larger timestep than the other parts. This saves the computational workload while the accuracy is preserved. A nice property of multirate is that it does not use any linear structure, in contrast to MOR, but only a relaxation concept. If the coupling is sufficiently monitored and the partitioning is well chosen, multirate can be very efficient.

Original language | English |
---|---|

Title of host publication | Progress in Industrial Mathematics at ECMI 2008 |

Editors | A.D. Fitt, J. Norbury, H. Ockendon, E. Wilson |

Place of Publication | Berlin |

Publisher | Springer |

Pages | 333-340 |

ISBN (Print) | 978-030642-12109-8 |

DOIs | |

Publication status | Published - 2010 |

### Publication series

Name | Mathematics in Industry |
---|---|

Volume | 15 |

ISSN (Print) | 1612-3956 |

## Fingerprint Dive into the research topics of 'Terminal current interpolation for multirate time integration of hierarchical IC models'. Together they form a unique fingerprint.

## Cite this

Verhoeven, A., Maten, ter, E. J. W., Dohmen, J. J., Tasic, B., & Mattheij, R. M. M. (2010). Terminal current interpolation for multirate time integration of hierarchical IC models. In A. D. Fitt, J. Norbury, H. Ockendon, & E. Wilson (Eds.),

*Progress in Industrial Mathematics at ECMI 2008*(pp. 333-340). (Mathematics in Industry; Vol. 15). Springer. https://doi.org/10.1007/978-3-642-12110-4_51