TY - JOUR
T1 - Temperature dependent two-body abrasive wear of polycarbonate surfaces
AU - Kershah, Tarek
AU - Looijmans, Stan
AU - Anderson, Patrick
AU - van Breemen, Lambèrt
PY - 2019/12/15
Y1 - 2019/12/15
N2 - During the lifetime of polycarbonate surfaces, which for example are used as helmets or protective eye visors, friction and abrasive wear may result from scratching or sliding cycles. Previous research showed that it is essential to understand the intrinsic mechanical response of the polymer in order to further investigate its frictional and wear response. The Eindhoven Glassy Polymer (EGP) model is a 3D elasto-viscoplastic constitutive model, developed to describe the intrinsic mechanical response of polymer glasses. Temperature is a crucial player in the intrinsic response and also plays a pivotal role in the resulting frictional response as tested via a single-asperity scratch test. In the current study, a finite element model is used to investigate the effect of temperature on the frictional response of polycarbonate and detect the onset of crack formation and wear initiation. The results show that temperature has a strong effect on the intrinsic response of the polymer, i.e. drop in yield stress and altered strain-hardening and strain-softening response. However, it has a minute effect on its frictional response, the simulation model is able to capture this response quantitively. In addition, cracks are observed experimentally at elevated temperature. A critical positive hydrostatic stress value is selected as a criterion for crack formation. It has been shown that at elevated temperatures the value of the maximum positive hydrostatic stress increases due to the altered intrinsic response of the material on one hand, and the increased adhesion between the tip and the polymer on the other hand.
AB - During the lifetime of polycarbonate surfaces, which for example are used as helmets or protective eye visors, friction and abrasive wear may result from scratching or sliding cycles. Previous research showed that it is essential to understand the intrinsic mechanical response of the polymer in order to further investigate its frictional and wear response. The Eindhoven Glassy Polymer (EGP) model is a 3D elasto-viscoplastic constitutive model, developed to describe the intrinsic mechanical response of polymer glasses. Temperature is a crucial player in the intrinsic response and also plays a pivotal role in the resulting frictional response as tested via a single-asperity scratch test. In the current study, a finite element model is used to investigate the effect of temperature on the frictional response of polycarbonate and detect the onset of crack formation and wear initiation. The results show that temperature has a strong effect on the intrinsic response of the polymer, i.e. drop in yield stress and altered strain-hardening and strain-softening response. However, it has a minute effect on its frictional response, the simulation model is able to capture this response quantitively. In addition, cracks are observed experimentally at elevated temperature. A critical positive hydrostatic stress value is selected as a criterion for crack formation. It has been shown that at elevated temperatures the value of the maximum positive hydrostatic stress increases due to the altered intrinsic response of the material on one hand, and the increased adhesion between the tip and the polymer on the other hand.
KW - Contact mechanics
KW - Finite element modelling
KW - Single-asperity sliding friction
KW - Temperature
UR - http://www.scopus.com/inward/record.url?scp=85073967860&partnerID=8YFLogxK
U2 - 10.1016/j.wear.2019.203089
DO - 10.1016/j.wear.2019.203089
M3 - Article
SN - 0043-1648
VL - 440-441
JO - Wear
JF - Wear
M1 - 203089
ER -