TY - JOUR
T1 - Targeting mTOR in myeloid cells prevents infection-associated inflammation
AU - Toner, Yohana C.
AU - Munitz, Jazz
AU - Prevot, Geoffrey
AU - Morla-Folch, Judit
AU - Wang, William
AU - van Elsas, Yuri
AU - Priem, Bram
AU - Deckers, Jeroen
AU - Anbergen, Tom
AU - Beldman, Thijs J.
AU - Brechbühl, Eliane E.S.
AU - Aksu, Muhammed D.
AU - Ziogas, Athanasios
AU - Sarlea, Sebastian A.
AU - Ozturk, Mumin
AU - Zhang, Zhenhua
AU - Li, Wenchao
AU - Li, Yang
AU - Maier, Alexander
AU - Fernandes, Jessica C.
AU - Cremers, Glenn A.O.
AU - van Genabeek, Bas
AU - Kreijtz, Joost H.C.M.
AU - Lutgens, Esther
AU - Riksen, Niels P.
AU - Janssen, Henk M.
AU - Söntjens, Serge H.M.
AU - Hoeben, Freek J.M.
AU - Kluza, Ewelina
AU - Singh, Gagandeep
AU - Giamarellos-Bourboulis, Evangelos J.
AU - Schotsaert, Michael
AU - Duivenvoorden, Raphaël
AU - van der Meel, Roy
AU - Joosten, Leo A.B.
AU - Cai, Lei
AU - Temel, Ryan E.
AU - Fayad, Zahi A.
AU - Mhlanga, Musa M.
AU - van Leent, Mandy M.T.
AU - Teunissen, Abraham J.P.
AU - Netea, Mihai G.
AU - Mulder, Willem J.M.
N1 - Publisher Copyright:
© 2025 The Author(s)
PY - 2025/4/18
Y1 - 2025/4/18
N2 - Infections, cancer, and trauma can cause life-threatening hyperinflammation. In the present study, using single-cell RNA sequencing of circulating immune cells, we found that the mammalian target of rapamycin (mTOR) pathway plays a critical role in myeloid cell regulation in COVID-19 patients. Previously, we developed an mTOR-inhibiting nanobiologic (mTORi-nanobiologic) that efficiently targets myeloid cells and their progenitors in the bone marrow. In vitro, we demonstrated that mTORi-nanobiologics potently inhibit infection-associated inflammation in human primary immune cells. Next, we investigated the in vivo effect of mTORi-nanobiologics in mouse models of hyperinflammation and acute respiratory distress syndrome. Using 18F-FDG uptake and flow cytometry readouts, we found mTORi-nanobiologic therapy to efficiently reduce hematopoietic organ metabolic activity and inflammation to levels comparable to those of healthy control animals. Together, we show that regulating myelopoiesis with mTORi-nanobiologics is a compelling therapeutic strategy to prevent deleterious organ inflammation in infection-related complications.
AB - Infections, cancer, and trauma can cause life-threatening hyperinflammation. In the present study, using single-cell RNA sequencing of circulating immune cells, we found that the mammalian target of rapamycin (mTOR) pathway plays a critical role in myeloid cell regulation in COVID-19 patients. Previously, we developed an mTOR-inhibiting nanobiologic (mTORi-nanobiologic) that efficiently targets myeloid cells and their progenitors in the bone marrow. In vitro, we demonstrated that mTORi-nanobiologics potently inhibit infection-associated inflammation in human primary immune cells. Next, we investigated the in vivo effect of mTORi-nanobiologics in mouse models of hyperinflammation and acute respiratory distress syndrome. Using 18F-FDG uptake and flow cytometry readouts, we found mTORi-nanobiologic therapy to efficiently reduce hematopoietic organ metabolic activity and inflammation to levels comparable to those of healthy control animals. Together, we show that regulating myelopoiesis with mTORi-nanobiologics is a compelling therapeutic strategy to prevent deleterious organ inflammation in infection-related complications.
KW - Biochemistry
KW - Biological sciences
KW - Immunology
KW - Natural sciences
UR - http://www.scopus.com/inward/record.url?scp=105000100029&partnerID=8YFLogxK
U2 - 10.1016/j.isci.2025.112163
DO - 10.1016/j.isci.2025.112163
M3 - Article
C2 - 40177636
AN - SCOPUS:105000100029
SN - 2589-0042
VL - 28
JO - iScience
JF - iScience
IS - 4
M1 - 112163
ER -