Systematic hyperparameter selection in Machine Learning-based engine control to minimize calibration effort

P. Garg (Corresponding author), Emilia Silvas, Frank P.T. Willems

Research output: Contribution to journalArticleAcademicpeer-review

73 Downloads (Pure)

Abstract

For automotive powertrain control systems, the calibration effort is exploding due to growing system complexity and increasingly strict legal requirements for greenhouse gas and real-world pollutant emissions. These powertrain systems are characterized by their highly dynamic operation, so transient performance is key. Currently applied control methods require tuning of an increasing number of look-up tables and of parameters in the applied models. Especially for transient control this state-of-the-art calibration process is unsystematic and requires a large development effort. Also, embedding models in a controller can set challenging requirements to production control hardware. In this work, we assess the potential of Machine Learning to dramatically reduce the calibration effort in transient air path control development. This is not only done for the existing benchmark controller, but also for a new preview controller. In order to efficiently realize preview, a strategy is proposed where the existing reference signal is shifted in time. These reference signals are then modeled as a function of engine torque demand using a Long Short-Term Memory (LSTM) neural network, which can capture the dynamic input–output relationship. A multi-objective optimization problem is defined to systematically select hyperparameters that optimize the trade-off between model accuracy, system performance, calibration effort and computational requirements. This problem is solved using an exhaustive search approach. The control system performance is validated over a transient driving cycle. For the LSTM-based controllers, the proposed calibration approach achieves a significant reduction of 71% in the control calibration effort compared to the benchmark process. The expert effort and turbocharger experiments used in calibrating transient compensation maps in physics-based feedforward controller are replaced by little simulation time and parametrization effort in ML-based controller, which requires significantly less expert effort and system knowledge compared to benchmark process. The best trade-off between multi-objective cost terms is achieved with one layer and 32 cells LSTM neural network for both non-preview and preview control. For non-preview control, a comparable control system performance is achieved with the LSTM-based controller, while 5% reduction in cumulative NOx emissions and similar fuel consumption is achieved with preview controller.
Original languageEnglish
Article number105666
Number of pages14
JournalControl Engineering Practice
Volume140
DOIs
Publication statusPublished - Nov 2023

Keywords

  • Engine control calibration
  • Long short-term memory neural network
  • Machine Learning
  • Preview control

Fingerprint

Dive into the research topics of 'Systematic hyperparameter selection in Machine Learning-based engine control to minimize calibration effort'. Together they form a unique fingerprint.

Cite this