System identification and low-order optimal control of intersample behavior in ILC

T.A.E. Oomen, J.J.M. Wijdeven, van de, O.H. Bosgra

Research output: Contribution to journalArticleAcademicpeer-review

17 Citations (Scopus)
108 Downloads (Pure)

Abstract

Although iterative learning control (ILC) algorithms enable performance improvement for batch repetitive systems using limited system knowledge, at least an approximate model is essential. The aim of the present technical note is to develop an ILC framework for sampled-data systems, i.e., by incorporating the intersample response. Hereto, a novel parametric system identification procedure and a low-order optimal ILC controller synthesis procedure are presented that both incorporate the intersample behavior in a multirate framework. The results include i) improved computational properties compared to prior optimization-based ILC algorithms, and ii) improved performance of sampled-data systems compared to common discrete time ILC. These results are confirmed in a simulation example.
Original languageEnglish
Pages (from-to)2734-2739
JournalIEEE Transactions on Automatic Control
Volume56
Issue number11
DOIs
Publication statusPublished - 2011

Fingerprint Dive into the research topics of 'System identification and low-order optimal control of intersample behavior in ILC'. Together they form a unique fingerprint.

Cite this