Sylvester versus Gundelfinger

A.E. Brouwer, M. Popoviciu

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
112 Downloads (Pure)

Abstract

Let $V_n$ be the $\SLtwo$-module of binary forms of degree $n$ and let $V = V_1 \oplus V_3 \oplus V_4$.We show that the minimum number of generators of the algebra $R = \mathbb{C}[V]^{\SLtwo}$ of polynomial functions on $V$ invariant under the action of $\SLtwo$ equals 63. This settles a 143-year old question.
Original languageEnglish
Article number075
Pages (from-to)1-7
JournalSymmetry, Integrability and Geometry: Methods and Applications
Volume8
DOIs
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Sylvester versus Gundelfinger'. Together they form a unique fingerprint.

Cite this