Abstract
Supramolecular fibers in water, micrometers long and several nanometers in width, are among the most studied nanostructures for biomedical applications. These supramolecular polymers are formed through a spontaneous self-assembly process of small amphiphilic molecules by specific secondary interactions. Although many compounds do not possess a stereocenter, recent studies suggest the (co)existence of helical structures, albeit in racemic form. Here, we disclose a series of supramolecular (co)polymers based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) that form double helices, fibers that were long thought to be chains of single molecules stacked in one dimension (1D). Detailed cryogenic transmission electron microscopy (cryo-TEM) studies and subsequent three-dimensional-volume reconstructions unveiled helical repeats, ranging from 15 to 30 nm. Most remarkable, the pitch can be tuned through the composition of the copolymers, where two different monomers with the same core but different peripheries are mixed in various ratios. Like in lipid bilayers, the hydrophobic shielding in the aggregates of these disc-shaped molecules is proposed to be best obtained by dimer formation, promoting supramolecular double helices. It is anticipated that many of the supramolecular polymers in water will have a thermodynamic stable structure, such as a double helix, although small structural changes can yield single stacks as well. Hence, it is essential to perform detailed analyses prior to sketching a molecular picture of these 1D fibers.
Original language | English |
---|---|
Pages (from-to) | 17644-17652 |
Number of pages | 9 |
Journal | Journal of the American Chemical Society |
Volume | 142 |
Issue number | 41 |
Early online date | 29 Sept 2020 |
DOIs | |
Publication status | Published - 14 Oct 2020 |
Funding
We gratefully acknowledge A.J.H. Spiering for synthetic support. The authors acknowledge financial support from the Dutch Ministry of Education, Culture and Science (Gravity Program 024.001.035) and the ERC Advanced Grant SynMat (788618). H.G., S.H., and C.B. thank SFB765 of the German Science Foundation (DFG) for funding. E.W.M. thanks the Humboldt Foundation for support.
Funders | Funder number |
---|---|
Alexander von Humboldt-Stiftung | |
Horizon 2020 Framework Programme | 788618 |
H2020 European Research Council | SFB765 |
Deutsche Forschungsgemeinschaft | |
Ministerie van Onderwijs, Cultuur en Wetenschap | 024.001.035 |
Fingerprint
Dive into the research topics of 'Supramolecular Double Helices from Small C3-symmetrical Molecules Aggregated in Water'. Together they form a unique fingerprint.Equipment
-
Center for Multiscale Electron Microscopy (CMEM)
Friedrich, H. (Manager), Joosten, R. (Education/research officer), Schmit, P. (Education/research officer), Schreur - Piet, I. (Other) & Spoelstra, A. (Education/research officer)
Physical ChemistryFacility/equipment: Research lab