Abstract
Solid particles adsorbed at fluid interfaces are crucial for the mechanical stability of Pickering emulsions. The key parameter which determines the kinetic and thermodynamic properties of these colloids is the particle contact angle, θ. Several methods have recently been developed to measure the contact angle of individual particles adsorbed at liquid-liquid interfaces, as morphological and chemical heterogeneities at the particle surface can significantly affect θ. However, none of these techniques enables the simultaneous visualization of the nanoparticles and the reconstruction of the fluid interface to which they are adsorbed, in situ. To tackle this challenge, we utilize a newly developed super-resolution microscopy method, called iPAINT, which exploits non-covalent and continuous labelling of interfaces with photo-activatable fluorescent probes. Herewith, we resolve with nanometer accuracy both the position of individual nanoparticles at a water-octanol interface and the location of the interface itself. First, we determine single particle contact angles for both hydrophobic and hydrophilic spherical colloids. These experiments reveal a non-negligible dependence of θ on particle size, from which we infer an effective line tension, τ. Next, we image elliptical particles at a water-decane interface, showing that the corresponding interfacial deformations can be clearly captured by iPAINT microscopy.
Original language | English |
---|---|
Pages (from-to) | 6654-6661 |
Number of pages | 8 |
Journal | Nanoscale |
Volume | 11 |
Issue number | 14 |
DOIs | |
Publication status | Published - 14 Apr 2019 |
Funding
The authors would like to thank Prof. Jan Vermant for useful discussion, M. M. R. M Hendrix for AFM measurements and C. C. M. Sproncken for interfacial tension experiments. This work was supported by the Dutch Science Foundation (NWO VIDI Grant 723.014.006), the European Union (ERC 2014 StG contract 635928), and the Dutch Ministry of Education, Culture and Science (Gravity program 024.001.035).