Summarizing clinical pathways from event logs

Z. Huang, X. Lu, H. Duan, Wu Fan

Research output: Contribution to journalArticleAcademicpeer-review

54 Citations (Scopus)
161 Downloads (Pure)

Abstract

Objective Clinical pathway analysis, as a pivotal issue in ensuring specialized, standardized, normalized and sophisticated therapy procedures, is receiving increasing attention in the field of medical informatics. Research in clinical pathway analysis has so far mostly focused on looking at aggregated data seen from an external perspective, and only provide very limited insight into the pathways. In some recent work, process mining techniques have been studied in discovering clinical pathway models from data. While it is interesting, discovered models may provide too much detail to give a comprehensive summary of the pathway. Moreover, the number of patterns discovered can be large. Alternatively, this article presents a new approach to build a concise and comprehensive summary that describes the entire structure of a clinical pathway, while revealing essential/critical medical behaviors in specific time intervals over the whole time period of the pathway. Methods The presented approach summarizes a clinical pathway from the collected clinical event log, which regularly records all kinds of patient therapy and treatment activities in clinical workflow by various hospital information systems. The proposed approach formally defines the clinical pathway summarization problem as an optimization problem that can be solved in polynomial time by using a dynamic-programming algorithm. More specifically, given an input event log, the presented approach summarizes the pathway by segmenting the observed time period of the pathway into continuous and overlapping time intervals, and discovering frequent medical behavior patterns in each specific time interval from the log. Results The proposed approach is evaluated via real-world data-sets, which are extracted from Zhejiang Huzhou Central hospital of China with regard to four specific diseases, i.e., bronchial lung cancer, colon cancer, gastric cancer, and cerebral infarction, in two years (2007.08–2009.09). Although the medical behaviors contained in these logs are very diverse and heterogeneous, experimental results indicates that the presented approach is feasible to construct condensed clinical pathway summaries in polynomial time from the collected logs, and have a linear scalability against the increasing size of the logs. Conclusion Experiments on real data-sets illustrate that the presented approach is efficient and discovers high-quality results: the observed time period of a clinical pathway is correctly segmented into a set of continuous and overlapping time intervals, in which essential/critical medical behaviors are well discovered from the event log to form the backbone of a clinical pathway. The experimental results indicate that the generated clinical pathway summary not only reveals the global structure of a pathway, but also provides a thorough understanding of the way in which actual medical behaviors are practiced in specific time intervals, which might be essential from the perspectives of clinical pathway analysis and improvement.
Original languageEnglish
Pages (from-to)111-127
JournalJournal of Biomedical Informatics
Volume46
Issue number1
DOIs
Publication statusPublished - 2013

Fingerprint

Critical Pathways
Polynomials
Dynamic programming
Scalability
Information systems
Colonic Neoplasms
Stomach Neoplasms
Bronchial Diseases
Hospital Information Systems
Medical Informatics
Workflow
Cerebral Infarction
China
Lung Neoplasms
Therapeutics

Cite this

Huang, Z. ; Lu, X. ; Duan, H. ; Fan, Wu. / Summarizing clinical pathways from event logs. In: Journal of Biomedical Informatics. 2013 ; Vol. 46, No. 1. pp. 111-127.
@article{57cbcba22a4849f1b0cce8f9e551cdbc,
title = "Summarizing clinical pathways from event logs",
abstract = "Objective Clinical pathway analysis, as a pivotal issue in ensuring specialized, standardized, normalized and sophisticated therapy procedures, is receiving increasing attention in the field of medical informatics. Research in clinical pathway analysis has so far mostly focused on looking at aggregated data seen from an external perspective, and only provide very limited insight into the pathways. In some recent work, process mining techniques have been studied in discovering clinical pathway models from data. While it is interesting, discovered models may provide too much detail to give a comprehensive summary of the pathway. Moreover, the number of patterns discovered can be large. Alternatively, this article presents a new approach to build a concise and comprehensive summary that describes the entire structure of a clinical pathway, while revealing essential/critical medical behaviors in specific time intervals over the whole time period of the pathway. Methods The presented approach summarizes a clinical pathway from the collected clinical event log, which regularly records all kinds of patient therapy and treatment activities in clinical workflow by various hospital information systems. The proposed approach formally defines the clinical pathway summarization problem as an optimization problem that can be solved in polynomial time by using a dynamic-programming algorithm. More specifically, given an input event log, the presented approach summarizes the pathway by segmenting the observed time period of the pathway into continuous and overlapping time intervals, and discovering frequent medical behavior patterns in each specific time interval from the log. Results The proposed approach is evaluated via real-world data-sets, which are extracted from Zhejiang Huzhou Central hospital of China with regard to four specific diseases, i.e., bronchial lung cancer, colon cancer, gastric cancer, and cerebral infarction, in two years (2007.08–2009.09). Although the medical behaviors contained in these logs are very diverse and heterogeneous, experimental results indicates that the presented approach is feasible to construct condensed clinical pathway summaries in polynomial time from the collected logs, and have a linear scalability against the increasing size of the logs. Conclusion Experiments on real data-sets illustrate that the presented approach is efficient and discovers high-quality results: the observed time period of a clinical pathway is correctly segmented into a set of continuous and overlapping time intervals, in which essential/critical medical behaviors are well discovered from the event log to form the backbone of a clinical pathway. The experimental results indicate that the generated clinical pathway summary not only reveals the global structure of a pathway, but also provides a thorough understanding of the way in which actual medical behaviors are practiced in specific time intervals, which might be essential from the perspectives of clinical pathway analysis and improvement.",
author = "Z. Huang and X. Lu and H. Duan and Wu Fan",
year = "2013",
doi = "10.1016/j.jbi.2012.10.001",
language = "English",
volume = "46",
pages = "111--127",
journal = "Journal of Biomedical Informatics",
issn = "1532-0464",
publisher = "Academic Press Inc.",
number = "1",

}

Summarizing clinical pathways from event logs. / Huang, Z.; Lu, X.; Duan, H.; Fan, Wu.

In: Journal of Biomedical Informatics, Vol. 46, No. 1, 2013, p. 111-127.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Summarizing clinical pathways from event logs

AU - Huang, Z.

AU - Lu, X.

AU - Duan, H.

AU - Fan, Wu

PY - 2013

Y1 - 2013

N2 - Objective Clinical pathway analysis, as a pivotal issue in ensuring specialized, standardized, normalized and sophisticated therapy procedures, is receiving increasing attention in the field of medical informatics. Research in clinical pathway analysis has so far mostly focused on looking at aggregated data seen from an external perspective, and only provide very limited insight into the pathways. In some recent work, process mining techniques have been studied in discovering clinical pathway models from data. While it is interesting, discovered models may provide too much detail to give a comprehensive summary of the pathway. Moreover, the number of patterns discovered can be large. Alternatively, this article presents a new approach to build a concise and comprehensive summary that describes the entire structure of a clinical pathway, while revealing essential/critical medical behaviors in specific time intervals over the whole time period of the pathway. Methods The presented approach summarizes a clinical pathway from the collected clinical event log, which regularly records all kinds of patient therapy and treatment activities in clinical workflow by various hospital information systems. The proposed approach formally defines the clinical pathway summarization problem as an optimization problem that can be solved in polynomial time by using a dynamic-programming algorithm. More specifically, given an input event log, the presented approach summarizes the pathway by segmenting the observed time period of the pathway into continuous and overlapping time intervals, and discovering frequent medical behavior patterns in each specific time interval from the log. Results The proposed approach is evaluated via real-world data-sets, which are extracted from Zhejiang Huzhou Central hospital of China with regard to four specific diseases, i.e., bronchial lung cancer, colon cancer, gastric cancer, and cerebral infarction, in two years (2007.08–2009.09). Although the medical behaviors contained in these logs are very diverse and heterogeneous, experimental results indicates that the presented approach is feasible to construct condensed clinical pathway summaries in polynomial time from the collected logs, and have a linear scalability against the increasing size of the logs. Conclusion Experiments on real data-sets illustrate that the presented approach is efficient and discovers high-quality results: the observed time period of a clinical pathway is correctly segmented into a set of continuous and overlapping time intervals, in which essential/critical medical behaviors are well discovered from the event log to form the backbone of a clinical pathway. The experimental results indicate that the generated clinical pathway summary not only reveals the global structure of a pathway, but also provides a thorough understanding of the way in which actual medical behaviors are practiced in specific time intervals, which might be essential from the perspectives of clinical pathway analysis and improvement.

AB - Objective Clinical pathway analysis, as a pivotal issue in ensuring specialized, standardized, normalized and sophisticated therapy procedures, is receiving increasing attention in the field of medical informatics. Research in clinical pathway analysis has so far mostly focused on looking at aggregated data seen from an external perspective, and only provide very limited insight into the pathways. In some recent work, process mining techniques have been studied in discovering clinical pathway models from data. While it is interesting, discovered models may provide too much detail to give a comprehensive summary of the pathway. Moreover, the number of patterns discovered can be large. Alternatively, this article presents a new approach to build a concise and comprehensive summary that describes the entire structure of a clinical pathway, while revealing essential/critical medical behaviors in specific time intervals over the whole time period of the pathway. Methods The presented approach summarizes a clinical pathway from the collected clinical event log, which regularly records all kinds of patient therapy and treatment activities in clinical workflow by various hospital information systems. The proposed approach formally defines the clinical pathway summarization problem as an optimization problem that can be solved in polynomial time by using a dynamic-programming algorithm. More specifically, given an input event log, the presented approach summarizes the pathway by segmenting the observed time period of the pathway into continuous and overlapping time intervals, and discovering frequent medical behavior patterns in each specific time interval from the log. Results The proposed approach is evaluated via real-world data-sets, which are extracted from Zhejiang Huzhou Central hospital of China with regard to four specific diseases, i.e., bronchial lung cancer, colon cancer, gastric cancer, and cerebral infarction, in two years (2007.08–2009.09). Although the medical behaviors contained in these logs are very diverse and heterogeneous, experimental results indicates that the presented approach is feasible to construct condensed clinical pathway summaries in polynomial time from the collected logs, and have a linear scalability against the increasing size of the logs. Conclusion Experiments on real data-sets illustrate that the presented approach is efficient and discovers high-quality results: the observed time period of a clinical pathway is correctly segmented into a set of continuous and overlapping time intervals, in which essential/critical medical behaviors are well discovered from the event log to form the backbone of a clinical pathway. The experimental results indicate that the generated clinical pathway summary not only reveals the global structure of a pathway, but also provides a thorough understanding of the way in which actual medical behaviors are practiced in specific time intervals, which might be essential from the perspectives of clinical pathway analysis and improvement.

U2 - 10.1016/j.jbi.2012.10.001

DO - 10.1016/j.jbi.2012.10.001

M3 - Article

C2 - 23085455

VL - 46

SP - 111

EP - 127

JO - Journal of Biomedical Informatics

JF - Journal of Biomedical Informatics

SN - 1532-0464

IS - 1

ER -