Sum rules and large deviations for spectral measures on the unit circle

F. Gamboa, J.H. Nagel, A. Rouault

Research output: Contribution to journalArticleAcademicpeer-review

5 Citations (Scopus)
2 Downloads (Pure)

Abstract

This work is a companion paper of Gamboa, Nagel, Rouault (J. Funct. Anal. 2016). We continue to explore the connections between large deviations for random objects issued from random matrix theory and sum rules. Here, we are concerned essentially with measures on the unit circle whose support is an arc that is possibly proper. We particularly focus on two matrix models. The first one is the Gross-Witten ensemble. In the gapped regime we give a probabilistic interpretation of a Simon sum rule. The second matrix model is the Hua-Pickrell ensemble. Unlike the Gross-Witten ensemble the potential is here infinite at one point. Surprisingly, but as in the above mentioned paper, we obtain a completely new sum rule for the deviation to the equilibrium measure of the Hua-Pickrell ensemble. The extension to matrix measures is also studied.
Original languageEnglish
Article number1750005
Number of pages49
JournalRandom Matrices: Theory and Applications
Volume6
Issue number1
DOIs
Publication statusPublished - 2017
Externally publishedYes

Keywords

  • Sum rules
  • large deviations
  • orthogonal polynomials
  • random matrices
  • spectral measures

Fingerprint Dive into the research topics of 'Sum rules and large deviations for spectral measures on the unit circle'. Together they form a unique fingerprint.

Cite this