Abstract
Sum-Product Networks (SPNs) are a deep probabilistic architecture that up to now has been successfully employed for tractable inference. Here, we extend their scope towards unsupervised representation learning: we encode samples into continuous and categorical embeddings and show that they can also be decoded back into the original input space by leveraging MPE inference. We characterize when this Sum-Product Autoencoding (SPAE) leads to equivalent reconstructions and extend it towards dealing with missing embedding information. Our experimental results on several multi-label classification problems demonstrate that SPAE is competitive with state-of-the-art autoencoder architectures, even if the SPNs were never trained to reconstruct their inputs.
Original language | English |
---|---|
Title of host publication | 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 |
Publisher | AAAI Press |
Pages | 4163-4170 |
Number of pages | 8 |
ISBN (Electronic) | 9781577358008 |
Publication status | Published - 1 Jan 2018 |
Externally published | Yes |
Event | 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States Duration: 2 Feb 2018 → 7 Feb 2018 |
Conference
Conference | 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 2/02/18 → 7/02/18 |