Sum of exit times in a series of two metastable states

E.N.M. Cirillo, F.R. Nardi, C. Spitoni

Research output: Contribution to journalArticleAcademicpeer-review

21 Citations (Scopus)
1 Downloads (Pure)

Abstract

The problem of not degenerate in energy metastable states forming a series in the framework of reversible finite state space Markov chains is considered. Metastability has been widely studied both in the mathematical and physical literature. Metastable states arises close to a first order phase transition, when the system can be trapped for a long time (exponentially long with respect to the inverse of the temperature) before switching to the thermodynamically stable phase. In this paper, under rather general conditions, we give a sharp estimate of the exit time from a metastable state in a presence of a second metastable state that must be necessarily visited by the system before eventually reaching the stable phase. In this framework we give a sharp estimate of the exit time from the metastable state at higher energy and, on the proper exponential time scale, we prove an addition rule. As an application of the theory, we study the Blume-Capel model in the zero chemical potential case.

Original languageEnglish
Pages (from-to)2421-2438
Number of pages18
JournalEuropean Physical Journal : Special Topics
Volume226
Issue number10
DOIs
Publication statusPublished - 1 Jul 2017

Fingerprint

Dive into the research topics of 'Sum of exit times in a series of two metastable states'. Together they form a unique fingerprint.

Cite this