Abstract
This paper demonstrates the use of sulfonated foam structures, acting both as catalyst and liquid-liquid contactor, during the continuous dehydration of xylose to furfural in biphasic media. First, we develop and optimize a coating procedure comprising a two-step polymerization technique (polypropylene and polystyrene-divinylbenzene), followed by swelling and sulfonation. The method was highly reproducible and led to a stable, well-adhered, 12–50 μm layer of sulfonic resin with an ion exchange capacity of 0.1 meq/cmfoam3. The catalytic foams showed the same activity than H2SO4 in terms of conversion and selectivity versus residence time and temperature. The enhanced mass transfer properties of the foam-based reactor facilitated rapid furfural extraction, thus allowing for higher temperature operations (ca. 20–50 °C higher) and shorter residence times (ca. 10 min vs. 4–5 h) than conventionally reported in the literature, while preserving high furfural selectivity (ca. 70–80%). Finally, the stability of the sulfonated foam catalyst during operation was demonstrated up to 170 °C, although higher temperatures led to a visible decay in activity. We conclude that the sulfonated foams show great potential for this application.
Original language | English |
---|---|
Pages (from-to) | 274-281 |
Number of pages | 8 |
Journal | Catalysis Today |
Volume | 365 |
Early online date | 31 Dec 2020 |
DOIs | |
Publication status | Published - 1 Apr 2021 |
Funding
The research reported in this manuscript was partly sponsored by SABIC. The authors also acknowledge the contribution of Pablo Ruiz Lopez during the data acquisition.
Keywords
- Foam catalyst
- Furfural
- Sulfonic resin