Structure functions in rotating Rayleigh-Bénard convection.

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review


A combined numerical-experimental investigation on the scaling of velocity structure functions in turbulent rotating Rayleigh-Bénard convection is carried out. Direct numerical simulations in a cylindrical domain and a horizontally periodic domain are compared with experiments using a cylindrical tank in which stereoscopic particle image velocimetry is employed. The turbulent length scales that govern the scaling of the structure functions are evaluated directly in the numerical simulations. They provide a framework for the interpretation of the structure functions. The composition of the domain (cylinder/periodic) has a quantitative effect on the length scales even in the fluid bulk. At lower rotation rates an additional scaling range due to rotation is found. At higher rotation rates a direct transition is observed from dissipation-range scaling at small separations to an uncorrelated state at larger separations.
Original languageEnglish
Title of host publicationProceedings of the European Turbulence Conference (ETC 13), September 12-15, 2011, Warsaw, Poland
EditorsK. Bajer
Publication statusPublished - 2011
Eventconference; 13th EUROMECH European Turbulence Conference -
Duration: 1 Jan 2011 → …

Publication series

NameJournal of Physics: Conference Series
ISSN (Print)1742-6588


Conferenceconference; 13th EUROMECH European Turbulence Conference
Period1/01/11 → …
Other13th EUROMECH European Turbulence Conference


Dive into the research topics of 'Structure functions in rotating Rayleigh-Bénard convection.'. Together they form a unique fingerprint.

Cite this