Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

E. Wientjes, J. Renger, A.G. Curto, R. Cogdell, N.F. van Hulst

Research output: Contribution to journalArticleAcademicpeer-review

82 Citations (Scopus)

Abstract

The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ∼20ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a non-classical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes.

Original languageEnglish
Article number4236
Pages (from-to)1-7
JournalNature Communications
Volume5
DOIs
Publication statusPublished - 23 Jun 2014
Externally publishedYes

Fingerprint Dive into the research topics of 'Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching'. Together they form a unique fingerprint.

Cite this