TY - JOUR
T1 - Strain-based discoordination imaging during exercise in heart failure with reduced ejection fraction
T2 - Feasibility and reproducibility
AU - Fixsen, Louis S.
AU - Wouters, Philippe C.
AU - Lopata, Richard G.P.
AU - Kemps, Hareld M.C.
N1 - © 2022. The Author(s).
PY - 2022/3/25
Y1 - 2022/3/25
N2 - PURPOSE: Various parameters of mechanical dyssynchrony have been proposed to improve patient selection criteria for cardiac resynchronization therapy, but sensitivity and specificity are lacking. However, echocardiographic parameters are consistently investigated at rest, whereas heart failure (HF) symptoms predominately manifest during submaximal exertion. Although strain-based predictors of response are promising, feasibility and reproducibility during exercise has yet to be demonstrated.METHODS: Speckle-tracking echocardiography was performed in patients with HF at two separate visits. Echocardiography was performed at rest, during various exercise intensity levels, and during recovery from exercise. Systolic rebound stretch of the septum (SRSsept), systolic shortening, and septal discoordination index (SDI) were calculated.RESULTS: Echocardiography was feasible in about 70-80% of all examinations performed during exercise. Of these acquired views, 84% of the cine-loops were suitable for analysis of strain-based mechanical dyssynchrony. Test-retest variability and intra- and inter-operator reproducibility at 30% and 60% of the ventilatory threshold (VT) were about 2.5%. SDI improved in the majority of patients at 30% and 60% of the VT, with moderate to good agreement between both intensity levels.CONCLUSION: Although various challenges remain, exercise echocardiography with strain analysis appears to be feasible in the majority of patients with dyssynchronous heart failure. Inter- and intra-observer agreement of SRSsept and SDI up to 60% of the VT were comparable to resting values. During exercise, the extent of SDI was variable, suggesting a heterogeneous response to exercise. Further research is warranted to establish its clinical significance.
AB - PURPOSE: Various parameters of mechanical dyssynchrony have been proposed to improve patient selection criteria for cardiac resynchronization therapy, but sensitivity and specificity are lacking. However, echocardiographic parameters are consistently investigated at rest, whereas heart failure (HF) symptoms predominately manifest during submaximal exertion. Although strain-based predictors of response are promising, feasibility and reproducibility during exercise has yet to be demonstrated.METHODS: Speckle-tracking echocardiography was performed in patients with HF at two separate visits. Echocardiography was performed at rest, during various exercise intensity levels, and during recovery from exercise. Systolic rebound stretch of the septum (SRSsept), systolic shortening, and septal discoordination index (SDI) were calculated.RESULTS: Echocardiography was feasible in about 70-80% of all examinations performed during exercise. Of these acquired views, 84% of the cine-loops were suitable for analysis of strain-based mechanical dyssynchrony. Test-retest variability and intra- and inter-operator reproducibility at 30% and 60% of the ventilatory threshold (VT) were about 2.5%. SDI improved in the majority of patients at 30% and 60% of the VT, with moderate to good agreement between both intensity levels.CONCLUSION: Although various challenges remain, exercise echocardiography with strain analysis appears to be feasible in the majority of patients with dyssynchronous heart failure. Inter- and intra-observer agreement of SRSsept and SDI up to 60% of the VT were comparable to resting values. During exercise, the extent of SDI was variable, suggesting a heterogeneous response to exercise. Further research is warranted to establish its clinical significance.
KW - Cardiac resynchronization therapy
KW - Echocardiography
KW - Exercise
KW - Feasibility
KW - Heart failure
KW - Systolic rebound stretch
UR - http://www.scopus.com/inward/record.url?scp=85127232449&partnerID=8YFLogxK
U2 - 10.1186/s12872-022-02578-w
DO - 10.1186/s12872-022-02578-w
M3 - Article
C2 - 35337295
SN - 1471-2261
VL - 22
JO - BMC Cardiovascular Disorders
JF - BMC Cardiovascular Disorders
IS - 1
M1 - 127
ER -