Stabilizing lead-free all-inorganic tin halide Perovskites by ion exchange

J. Jiang, Chidozie Onwudinanti, Ross A. Hatton, P.A. Bobbert, S. Tao

Research output: Contribution to journalArticleAcademicpeer-review

78 Citations (Scopus)
618 Downloads (Pure)

Abstract

Because of its thermal stability, lead-free composition, and nearly ideal optical and electronic properties, the orthorhombic CsSnI3 perovskite is considered promising as a light absorber for lead-free all-inorganic perovskite solar cells. However, the susceptibility of this three-dimensional perovskite toward oxidation in air has limited the development of solar cells based on this material. Here, we report the findings of a computational study which identifies promising RbyCs1–ySn(BrxI1–x)3 perovskites for solar cell applications, prepared by substituting cations (Rb for Cs) and anions (Br for I) in CsSnI3. We show the evolution of the material electronic structure as well as its thermal and structural stabilities upon gradual substitution. Importantly, we demonstrate how the unwanted yellow phase can be suppressed by substituting Br for I in CsSn(BrxI1–x)3 with x ≥ 1/3. We predict that substitution of Rb for Cs results in a highly homogeneous solid solution and therefore an improved film quality and applicability in solar cell devices.
Original languageEnglish
Pages (from-to)17660-17667
Number of pages8
JournalJournal of Physical Chemistry C
Volume122
Issue number31
DOIs
Publication statusPublished - 9 Aug 2018

Fingerprint

Dive into the research topics of 'Stabilizing lead-free all-inorganic tin halide Perovskites by ion exchange'. Together they form a unique fingerprint.

Cite this