TY - JOUR
T1 - Stabilizing lead-free all-inorganic tin halide Perovskites by ion exchange
AU - Jiang, J.
AU - Onwudinanti, Chidozie
AU - Hatton, Ross A.
AU - Bobbert, P.A.
AU - Tao, S.
PY - 2018/8/9
Y1 - 2018/8/9
N2 - Because of its thermal stability, lead-free composition, and nearly ideal optical and electronic properties, the orthorhombic CsSnI3 perovskite is considered promising as a light absorber for lead-free all-inorganic perovskite solar cells. However, the susceptibility of this three-dimensional perovskite toward oxidation in air has limited the development of solar cells based on this material. Here, we report the findings of a computational study which identifies promising RbyCs1–ySn(BrxI1–x)3 perovskites for solar cell applications, prepared by substituting cations (Rb for Cs) and anions (Br for I) in CsSnI3. We show the evolution of the material electronic structure as well as its thermal and structural stabilities upon gradual substitution. Importantly, we demonstrate how the unwanted yellow phase can be suppressed by substituting Br for I in CsSn(BrxI1–x)3 with x ≥ 1/3. We predict that substitution of Rb for Cs results in a highly homogeneous solid solution and therefore an improved film quality and applicability in solar cell devices.
AB - Because of its thermal stability, lead-free composition, and nearly ideal optical and electronic properties, the orthorhombic CsSnI3 perovskite is considered promising as a light absorber for lead-free all-inorganic perovskite solar cells. However, the susceptibility of this three-dimensional perovskite toward oxidation in air has limited the development of solar cells based on this material. Here, we report the findings of a computational study which identifies promising RbyCs1–ySn(BrxI1–x)3 perovskites for solar cell applications, prepared by substituting cations (Rb for Cs) and anions (Br for I) in CsSnI3. We show the evolution of the material electronic structure as well as its thermal and structural stabilities upon gradual substitution. Importantly, we demonstrate how the unwanted yellow phase can be suppressed by substituting Br for I in CsSn(BrxI1–x)3 with x ≥ 1/3. We predict that substitution of Rb for Cs results in a highly homogeneous solid solution and therefore an improved film quality and applicability in solar cell devices.
UR - http://www.scopus.com/inward/record.url?scp=85050479095&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.8b04013
DO - 10.1021/acs.jpcc.8b04013
M3 - Article
C2 - 30116464
SN - 1932-7447
VL - 122
SP - 17660
EP - 17667
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 31
ER -