Spatiotemporal Communication in Artificial Cell Consortia for Dynamic Control of DNA Nanostructures

Antoni Llopis-Lorente (Corresponding author), Jingxin Shao, Jordi Ventura, Bastiaan C. Buddingh′, Ramón Martínez-Máñez, Jan C.M. van Hest (Corresponding author), Loai K.E.A. Abdelmohsen (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
9 Downloads (Pure)

Abstract

The spatiotemporal orchestration of cellular processes is a ubiquitous phenomenon in pluricellular organisms and bacterial communities, where sender cells secrete chemical signals that activate specific pathways in distant receivers. Despite its importance, the engineering and investigation of spatiotemporal communication in artificial cell consortia remains underexplored. In this study, we present spatiotemporal communication between cellular-scale entities acting as both senders and receivers. The transmitted signals are leveraged to elicit conformational alterations within compartmentalized DNA structures. Specifically, sender entities control and generate diffusive chemical signals, namely, variations in pH, through the conversion of biomolecular inputs. In the receiver population, compartmentalized DNA nanostructures exhibit changes in conformation, transitioning between triplex and duplex assemblies, in response to this pH variation. We demonstrate the temporal regulation of activated DNA nanostructures through the coordinated action of two antagonistic sender populations. Furthermore, we illustrate the transient distance-dependent activation of the receivers, facilitated by sender populations situated at defined spatial locations. Collectively, our findings provide novel avenues for the design of artificial cell consortia endowed with programmable spatiotemporal dynamics through chemical communication.

Original languageEnglish
Pages (from-to)1619-1628
Number of pages10
JournalACS Central Science
Volume10
Issue number8
Early online date22 Jul 2024
DOIs
Publication statusPublished - 28 Aug 2024

Funding

FundersFunder number
Universidad Politécnia de Valencia
Marie Skłodowska‐Curie
Agencia Estatal de Investigación
European Union's Horizon 2020 - Research and Innovation Framework ProgrammeMCIN/AEI/10.13039/501100011033, RYC2021-034728-I, 847675
European CommissionPAID-PD-22, PAID-06-22
Ministerie van Onderwijs, Cultuur en Wetenschap024.005.020, 024.003.013, 024.001.035

    Fingerprint

    Dive into the research topics of 'Spatiotemporal Communication in Artificial Cell Consortia for Dynamic Control of DNA Nanostructures'. Together they form a unique fingerprint.

    Cite this