TY - BOOK

T1 - Small volume fraction limit of the diblock copolymer problem : II. Diffuse-interface functional

AU - Choksi, R.

AU - Peletier, M.A.

PY - 2010

Y1 - 2010

N2 - We present the second of two articles on the small volume fraction limit of a nonlocal Cahn-Hilliard functional introduced to model microphase separation of diblock copolymers. After having established the results for the sharp-interface version of the functional ([8]), we consider here the full diffuse-interface functional and address the limit in which e and the volume fraction tend to zero but the number of minority phases (called particles) remains O(1). Using the language of G-convergence, we focus on two levels of this convergence, and derive first- and second-order effective energies, whose energy landscapes are simpler and more transparent. These limiting energies are only finite on weighted sums of delta functions, corresponding to the concentration of mass into 'point particles'. At the highest level, the effective energy is entirely local and contains information about the size of each particle but no information about their spatial distribution. At the next level we encounter a Coulomb-like interaction between the particles, which is responsible for the pattern formation. We present the results in three dimensions and comment on their two-dimensional analogues.

AB - We present the second of two articles on the small volume fraction limit of a nonlocal Cahn-Hilliard functional introduced to model microphase separation of diblock copolymers. After having established the results for the sharp-interface version of the functional ([8]), we consider here the full diffuse-interface functional and address the limit in which e and the volume fraction tend to zero but the number of minority phases (called particles) remains O(1). Using the language of G-convergence, we focus on two levels of this convergence, and derive first- and second-order effective energies, whose energy landscapes are simpler and more transparent. These limiting energies are only finite on weighted sums of delta functions, corresponding to the concentration of mass into 'point particles'. At the highest level, the effective energy is entirely local and contains information about the size of each particle but no information about their spatial distribution. At the next level we encounter a Coulomb-like interaction between the particles, which is responsible for the pattern formation. We present the results in three dimensions and comment on their two-dimensional analogues.

M3 - Report

T3 - CASA-report

BT - Small volume fraction limit of the diblock copolymer problem : II. Diffuse-interface functional

PB - Technische Universiteit Eindhoven

CY - Eindhoven

ER -