Abstract
In this paper we investigate the concept of simple termination. A term rewriting system is called simply terminating if its termination can be proved by means of a simplification order. The basic ingredient of a simplification order is the subterm property, but in the literature two different definitions are given: one based on (strict) partial orders and another one based on preorders (or quasi-orders). We argue that there is no reason to choose the second one as the first one has certain advantages.
Simplification orders are known to be well-founded orders on terms over a finite signature. This important result no longer holds if we consider infinite signatures. Nevertheless, well-known simplification orders like the recursive path order are also well-founded on terms over infinite signatures, provided the underlying precedence is well-founded. We propose a new definition of simplification order, which coincides with the old one (based on partial orders) in case of finite signatures, but which is also well-founded over infinite signatures and covers orders like the recursive path order. We investigate the properties of the ensuing class of simply terminating systems.
Original language | English |
---|---|
Pages (from-to) | 127-158 |
Number of pages | 32 |
Journal | Theoretical Computer Science |
Volume | 175 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1997 |