Abstract
We present new and short proofs of two theorems in the theory of lattice expansions. These proofs are based on a necessary and sufficient condition, found by Wexler and Raz, for biorthogonality. The first theorem is the Lyubarskii-Seip-Wallstén theorem for lattices, according to which the set of Gaussians 21/4 exp(-p(t - na)2 + 2pimbt), n, m ¿ Z, constitutes a frame when a > 0,b > 0,ab < 1. In addition, we display dual functions for this case. The second theorem is the result that a set gna,mb(t) = g(t - na) exp(2pimbt), n, m ¿ Z of time-frequency translates of a g ¿ L2(R) cannot be a frame when a > 0,b > 0,ab > 1.
Original language | English |
---|---|
Pages (from-to) | 350-354 |
Number of pages | 5 |
Journal | Applied and Computational Harmonic Analysis |
Volume | 1 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1994 |