Shock-induced wave propagation over porous and fractured borehole zones: Theory and experiments

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
2 Downloads (Pure)

Abstract

Borehole waves are strongly affected by adjacent porous zones or by fractures intersecting the borehole. A theoretical description for both porous and fracture zones is possible based on the introduction of an effective borehole fluid bulk modulus, characterizing the wave attenuation via borehole wall impedance. This impedance can be calculated for both porous and fracture zones adjacent to the borehole, thus predicting borehole wave attenuation, transmission, and reflection over such zones. A shock tube setup generates borehole tube waves that are used for porous and fracture zone characterization. A PVC sample is used to introduce and vary fractures in a cylindrical sample. Shock wave experiments show that attenuation in boreholes adjacent to porous zones can be predicted by theory. The transmittivities of a borehole tube wave over 1 and 5 mm fractures are correctly predicted, thus showing the potential of borehole wave experiments for fracture detection and characterization. (C) 2013 Acoustical Society of America.
Original languageEnglish
Pages (from-to)4792-4800
JournalJournal of the Acoustical Society of America
Volume134
Issue number6
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'Shock-induced wave propagation over porous and fractured borehole zones: Theory and experiments'. Together they form a unique fingerprint.

Cite this