Shifting the frontiers of analog and mixed-signal electronics

A.H.M. Roermund, van

Research output: Contribution to journalArticleAcademicpeer-review

99 Downloads (Pure)

Abstract

Nowadays, analog and mixed-signal (AMS) IC designs, mainly found in the frontends of large ICs, are highly dedicated, complex, and costly. They form a bottleneck in the communication with the outside world, determine an upper bound in quality, yield, and flexibility for the IC, and require a significant part of the power dissipation. Operating very close to physical limits, serious boundaries are faced. This paper relates, from a high-level point of view, these boundaries to the Shannon channel capacity and shows how the AMS circuitry forms a matching link in transforming the external analog signals, optimized for the communication medium, to the optimal on-chip signal representation, the digital one, for the IC medium. The signals in the AMS part itself are consequently not optimally matched to the IC medium. To further shift the frontiers of AMS design, a matching-driven design approach is crucial for AMS. Four levels will be addressed: technology-driven, states-driven, redundancy-driven, and nature-driven design. This is done based on an analysis of the various classes of AMS signals and their specific properties, seen from the angle of redundancy. This generic, but abstract way of looking at the design process will be substantiated with many specific examples.
Original languageEnglish
Pages (from-to)590970-1/16
Number of pages16
JournalAdvances in Electronics
Volume2104
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Shifting the frontiers of analog and mixed-signal electronics'. Together they form a unique fingerprint.

Cite this