Abstract
Solid sorbents are essential for developing technologies that directly capture CO2 from air. In solid sorbents, metal oxides and/or alkali metal carbonates such as potassium carbonate (K2CO3) are promising active components owing to their high thermal stability, low cost, and ability to chemisorb the CO2 present at low concentrations in air. However, this chemisorption process is likely limited by internal diffusion of CO2 into the bulk of K2CO3. Therefore, the size of the K2CO3 particles is expected to be an important factor in determining the kinetics of the sorption process during CO2 capture. To date, the effects of particle size on supported K2CO3 sorbents are unknown mainly because particle sizes cannot be unambiguously determined. Here, we show that by using a series of techniques, the size of supported K2CO3 particles can be established. We prepared size-tuned carbon-supported K2CO3 particles by tuning the K2CO3 loading. We further used melting point depression of K2CO3 particles to collectively estimate the average K2CO3 particle sizes. Using these obtained average particle sizes, we show that the particle size critically affects the efficiency of the sorbent in CO2 capture from air and directly affects the kinetics of CO2 sorption as well as the energy input needed for the desorption step. By evaluating the mechanisms involved in the diffusion of CO2 and H2O into K2CO3 particles, we relate the microscopic characteristics of sorbents to their macroscopic performance, which is of interest for industrial-scale CO2 capture from air.
Original language | English |
---|---|
Pages (from-to) | 14211-14221 |
Number of pages | 11 |
Journal | Industrial and Engineering Chemistry Research |
Volume | 61 |
Issue number | 38 |
DOIs | |
Publication status | Published - 28 Sept 2022 |
Bibliographical note
Funding Information:We gratefully acknowledge Roxani Chatzipanagiotou for SEM imaging, Lakshminarasimhan Sridharan for dynamic light scattering measurements, Xiaofeng Wu (Eindhoven University of Technology) for performing XPS measurements, Cristiane Barbieri Rodella (Brazilian Synchrotron Light Laboratory) for providing a beamtime opportunity, and Carlos Cabrera Rodriguez, Lars Kiewidt, Antecy and Bronswerk Heat Transfer for the contribution of the CAIR in the CO capture from air project. We are grateful to the European Regional Development Fund for the overall funding of the project (project number: PROJ-00675). 2
Fingerprint
Dive into the research topics of 'Shedding Light on Solid Sorbents: Evaluation of Supported Potassium Carbonate Particle Size and Its Effect on CO2Capture from Air'. Together they form a unique fingerprint.Equipment
-
Center for Multiscale Electron Microscopy (CMEM)
Heiner Friedrich (Manager), Rick Joosten (Education/research officer), Pauline Schmit (Education/research officer), Ingeborg Schreur - Piet (Other) & Anne Spoelstra (Education/research officer)
Physical ChemistryFacility/equipment: Research lab