TY - JOUR
T1 - Selective removal of water in purge and cold-trap capillary gas chromatographic analysis of volatile organic traces in aqueous samples
AU - Noij, T.H.M.
AU - van Es, A.J.J.
AU - Cramers, C.A.M.G.
AU - Rijks, J.A.
AU - Dooper, R.P.M.
PY - 1987
Y1 - 1987
N2 - The design and features of an on-line purge and cold-trap pre-concentration device for rapid analysis of volatile organic compounds in aqueous samples are discussed. Excessive water is removed from the purge gas by a condenser or a water permeable membrane in order to avoid blocking of the capillary cold-trap. Synthetic mixtures covering concentrations ranging from tenths to tens of ppb's and different chemical classes are used to study the effect of various process factors on the efficiency and selectivity of water removal as well as on the purging recovery. The importance of the concentration of the solutes, the flow rate in conjunction with the volume of the purge gas, and the temperature of the condenser, the cold-trap and the sample is emphasized. Theoretical models describing the purge process and the blocking of the cold-trap agree fairly well with the highly reproducible experimental results ( = 2-4%). Both the condenser and the Nafion membrane successfully remove water, although some compounds, dependent on volatility and polarity, are partly or completely lost. It is shown that non-polar volatile organic compounds are efficiently enriched so that recoveries between 80-100% and a detection limit of 1 ppt can be obtained. The applicability of the system is illustrated on some examples.
AB - The design and features of an on-line purge and cold-trap pre-concentration device for rapid analysis of volatile organic compounds in aqueous samples are discussed. Excessive water is removed from the purge gas by a condenser or a water permeable membrane in order to avoid blocking of the capillary cold-trap. Synthetic mixtures covering concentrations ranging from tenths to tens of ppb's and different chemical classes are used to study the effect of various process factors on the efficiency and selectivity of water removal as well as on the purging recovery. The importance of the concentration of the solutes, the flow rate in conjunction with the volume of the purge gas, and the temperature of the condenser, the cold-trap and the sample is emphasized. Theoretical models describing the purge process and the blocking of the cold-trap agree fairly well with the highly reproducible experimental results ( = 2-4%). Both the condenser and the Nafion membrane successfully remove water, although some compounds, dependent on volatility and polarity, are partly or completely lost. It is shown that non-polar volatile organic compounds are efficiently enriched so that recoveries between 80-100% and a detection limit of 1 ppt can be obtained. The applicability of the system is illustrated on some examples.
U2 - 10.1002/jhrc.1240100202
DO - 10.1002/jhrc.1240100202
M3 - Article
SN - 0344-7138
VL - 10
SP - 60
EP - 66
JO - HRC & CC, Journal of High Resolution Chromatography and Chromatography Communications
JF - HRC & CC, Journal of High Resolution Chromatography and Chromatography Communications
IS - 2
ER -