Scaling limits for critical inhomogeneous random graphs with finite third moments

Research output: Contribution to journalArticleAcademicpeer-review

35 Citations (Scopus)
94 Downloads (Pure)

Abstract

We identify the scaling limit for the sizes of the largest components at criticality for inhomogeneous random graphs with weights that have finite third moments. We show that the sizes of the (rescaled) components converge to the excursion lengths of an inhomogeneous Brownian motion, which extends results of Aldous (1997) for the critical behavior of Erdos-Rényi random graphs. We rely heavily on martingale convergence techniques, and concentration properties of (super)martingales. This paper is part of a programme initiated in van der Hofstad (2009) to study the near-critical behavior in inhomogeneous random graphs of so-called rank-1.
Original languageEnglish
Pages (from-to)1682-1702
Number of pages22
JournalElectronic Journal of Probability
Volume15
Issue number54
Publication statusPublished - 2010

Fingerprint Dive into the research topics of 'Scaling limits for critical inhomogeneous random graphs with finite third moments'. Together they form a unique fingerprint.

Cite this