Abstract
This article reconsiders the stabilizing controller synthesis problem for discrete-time linear systems with a focus on systems of large scale. In this case, existing solutions are either not scalable, and thus, not tractable, or conservative. This motivates us to exploit finite-time control Lyapunov functions (CLFs), i.e., a relaxation of the standard CLF concept, to obtain a nonconservative and scalable synthesis method. The main idea is to employ Minkowski functions of a particular family of polytopic sets, which includes the hyper--rhombus induced by the 1-norm, as candidate finite-time CLFs. This choice results in explicit periodic vertex-interpolation control laws, which are globally stabilizing. The vertex--control laws can be computed offline using distributed optimization, in a scalable fashion, while the actual control law comes in an explicit, distributed form. Large scale illustrative examples demonstrate the effectiveness of the proposed approach.
Original language | English |
---|---|
Title of host publication | Proceedings of the 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys), 25-26 September 2013, Koblenz, Germany |
Place of Publication | Pergamon |
Publisher | IFAC |
Pages | 277-284 |
DOIs | |
Publication status | Published - 2013 |