Robustness of time-multiplexed hyperthermia to temperature dependent thermal tissue properties

Grazia Cappiello (Corresponding author), Margarethus Paulides, Tomas Drizdal, Declan Oloughlin, Martin Ohalloran, Martin Glavin, Gerard van Rhoon, Edward Jones

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
51 Downloads (Pure)

Abstract

Microwave hyperthermia is a promising cancer treatment used in combination with radio- and chemotherapy. Typically, hyperthermia systems involve several antennas that transfer electromagnetic energy into the tissue. The principal need in hyperthermia treatment is to optimally focus the heating into the target while minimising heating in the surrounding healthy tissue. Patient-specific treatment planning is done to optimize the specific absorption rate and the resulting temperature distribution. Uncertainties associated with the thermal model used for temperature simulations represent an important challenge. Our previous work has demonstrated that the occurrence of hotspots can be reduced and target heating enhanced using time-multiplexed steering procedures. In this paper, the robustness of time-multiplexed hyperthermia against temperature dependent thermal tissue properties is investigated. Temperature simulations are used to predict the time-dependent heating achieved by multiple antenna phase and amplitude configurations that are generated by a multi-objective genetic algorithm and applied sequentially. The proposed strategy is compared with the heating obtained using one single heating setting obtained by particle swarm optimization as typically used in clinical hyperthermia. Thermal performance of the static and time-multiplexed methods are assessed by applying two thermal models, one that uses constant properties of blood perfusion and thermal conductivity of tumor, muscle and fat, and a second one that uses temperature dependent perfusion values. This study shows that time-multiplexed hyperthermia enhances target heating and limits the hotspot appearance regardless of the thermal model used in thermal simulations.

Original languageEnglish
Article number8932574
Pages (from-to)126-132
Number of pages7
JournalIEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology
Volume4
Issue number2
DOIs
Publication statusPublished - Jun 2020

Keywords

  • Hyperthermia
  • Hyperthermia Treatment Planning
  • Multi-objective Genetic Algorithm
  • Thermal Tissue Properties

Fingerprint

Dive into the research topics of 'Robustness of time-multiplexed hyperthermia to temperature dependent thermal tissue properties'. Together they form a unique fingerprint.

Cite this