Reversible polymers from self-complementary monomers, using quadruple hydrogen bonding

R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J.B. Folmer, J.H.K.K. Hirschberg, R.F.M. Lange, J.K.L. Lowe, E.W. Meijer

Research output: Contribution to journalArticleAcademicpeer-review

1852 Citations (Scopus)
119 Downloads (Pure)


Units of 2-ureido-4-pyrimidone that dimerize strongly in a self-complementary array of four cooperative hydrogen bonds were used as the assocg. end group in reversible self-assembling polymer systems. The unidirectional design of the binding sites prevents uncontrolled multidirectional assocn. or gelation. Linear polymers and reversible networks were formed from monomers with two and three binding sites, resp. The thermal and environmental control over lifetime and bond strength makes many properties, such as viscosity, chain length, and compn., tunable in a way not accessible to traditional polymers. Hence, polymer networks with thermodynamically controlled architectures can be formed, for use in, for example, coatings and hot melts, where a reversible, strongly temp.-dependent rheol. is highly advantageous
Original languageEnglish
Pages (from-to)1601-1604
Issue number5343
Publication statusPublished - 1997


Dive into the research topics of 'Reversible polymers from self-complementary monomers, using quadruple hydrogen bonding'. Together they form a unique fingerprint.

Cite this