Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations

Kai Yang, N.A. Krotkov, A.J. Krueger, S.A. Carn, P.K. Bhartia, P.F. Levelt

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

To improve global measurements of atmospheric sulfur dioxide (SO2), we have developed a new technique, called the linear fit (LF) algorithm, which uses the radiance measurements from the Ozone Monitoring Instrument (OMI) at a few discrete ultraviolet wavelengths to derive SO2, ozone, and effective reflectivity simultaneously. We have also developed a sliding median residual correction method for removing both the along- and cross-track biases from the retrieval results. The achieved internal consistencies among the LF-retrieved geophysical parameters clearly demonstrate the success of this technique. Comparison with the results from the Band Residual Difference technique has also illustrated the drastic improvements of this new technique at high SO2 loading conditions. We have constructed an error equation and derived the averaging kernel to characterize the LF retrieval and understand its limitations. Detailed error analysis has focused on the impacts of the SO2 column amounts and their vertical distributions on the retrieval results. The LF algorithm is robust and fast; therefore it is suitable for near real-time application in aviation hazards and volcanic eruption warnings. Very large SO2 loadings (>100 DU) require an off-line iterative solution of the LF equations to reduce the retrieval errors. Both the LF and sliding median techniques are very general so that they can be applied to measurements from other backscattered ultraviolet instruments, including the series of Total Ozone Mapping Spectrometer (TOMS) missions, thereby offering the capability to update the TOMS long-term record to maintain consistency with its OMI extension. Copyright 2007 by the American Geophysical Union. U7 - Export Date: 2 August 2010 U7 - Source: Scopus U7 - Art. No.: D24S43
Original languageEnglish
Article numberD24S43
Pages (from-to)D24S43-1/14
Number of pages14
JournalJournal of Geophysical Research. D, Atmospheres
Volume112
Issue number24
DOIs
Publication statusPublished - 2007

Fingerprint Dive into the research topics of 'Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations'. Together they form a unique fingerprint.

Cite this