Resonance effects on the crossover of bosonic to fermionic superfluidity

S. Palo, de, M.L. Chiofalo, M.J. Holland, S.J.J.M.F. Kokkelmans

    Research output: Contribution to journalArticleAcademicpeer-review

    37 Citations (Scopus)

    Abstract

    Feshbach scattering resonances are being utilized in atomic gases to explore the entire crossover region from a Bose-Einstein condensation (BEC) of composite bosons to a Bardeen-Cooper-Schrieffer (BCS) of Cooper pairs. Several theoretical descriptions of the crossover have been developed based on an assumption that the fermionic interactions are dependent only on the value of a single microscopic parameter, the scattering length for the interaction of fermion particles. Such a picture is not universal, however, and is only applicable to describe a system with an energetically broad Feshbach resonance. In the more general case in which narrow Feshbach resonances are included in the discussion, one must consider how the energy dependence of the scattering phase shift affects the physical properties of the system. We develop a theoretical framework which allows for a tuning of the scattering phase shift and its energy dependence, whose parameters can be fixed from realistic scattering solutions of the atomic physics. We show that BCS-like non-local solutions may build up in conditions of resonance scattering, depending on the effective range of the interactions. © 2004 Elsevier B.V. All rights reserved
    Original languageEnglish
    Pages (from-to)490-499
    JournalPhysics Letters A
    Volume327
    Issue number5-6
    DOIs
    Publication statusPublished - 12 Jul 2004

    Fingerprint

    Dive into the research topics of 'Resonance effects on the crossover of bosonic to fermionic superfluidity'. Together they form a unique fingerprint.

    Cite this