Abstract
The united atoms (UA) and dummy hydrogen atom (DHA) approaches for molecular dynamics simulations of the interface between oxidized atactic polystyrene (aPS) thin films and water are compared. For both oxidized and non-oxidized aPS films the polymer density profile decays steepest when using the UA model. The surface roughness of the aPS film and the ordering of the phenyl rings near the surface decrease upon changing from vacuum to water for the UA, but not for the DHA model. This also supports the fact that the non-oxidized aPS films modeled in DHA representation become less hydrophobic. The water structure close to the interface also suggests that the aPS films modeled using UA are more hydrophobic compared to the aPS films modeled with DHA in the phenyl rings.
Original language | English |
---|---|
Pages (from-to) | 90-97 |
Journal | Macromolecular Theory and Simulations |
Volume | 21 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2012 |