Abstract
The process of impinging water droplets on Streptococcus mutans biofilms was studied experimentally and numerically. Droplets were experimentally produced by natural breakup of a cylindrical liquid jet. Droplet diameter and velocity were varied between 20 and 200¿µm and between 20 and 100 m/s, respectively. The resulting erosion process of the biofilm was determined experimentally with high-speed recording techniques and a quantitative relationship between the removal rate, droplet size, and velocity was determined. The shear stress and the pressure on the surface during droplet impact were determined by numerical simulations, and a qualitative agreement between the experiment and the simulation was obtained. Furthermore, it was shown that the stresses on the surface are strongly reduced when a water film is present.
Original language | English |
---|---|
Article number | 124701 |
Pages (from-to) | 124701-1/8 |
Journal | Journal of Applied Physics |
Volume | 100 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2006 |