Region-based approximation of probability distributions (for visibility between imprecise points among obstacles)

K. Buchin, I. Kostitsyna, M. Löffler, R.I. Silveira

Research output: Book/ReportReportAcademic

112 Downloads (Pure)

Abstract

Let $p$ and $q$ be two imprecise points, given as probability density functions on $\mathbb R^2$, and let $\cal R$ be a set of $n$ line segments (obstacles) in $\mathbb R^2$. We study the problem of approximating the probability that $p$ and $q$ can see each other; that is, that the segment connecting $p$ and $q$ does not cross any segment of $\cal R$. To solve this problem, we approximate each density function by a weighted set of polygons; a novel approach to dealing with probability density functions in computational geometry.
Original languageEnglish
Publishers.n.
Number of pages13
Publication statusPublished - 2014

Publication series

NamearXiv.org
Volume1402.5681 [cs.CG]

Fingerprint

Dive into the research topics of 'Region-based approximation of probability distributions (for visibility between imprecise points among obstacles)'. Together they form a unique fingerprint.

Cite this