Abstract
In this work, we study a novel approach towards the reference-tracking feedforward control design for linear dynamical systems. By utilizing the superposition property and exploiting signal decomposition together with a quadratic optimization process, we obtain a feedforward design procedure for arbitrary linear multi-input and multi-output (MIMO) systems with arbitrary time/parameter-varying characteristics. In other words, the proposed algorithm is applicable to the broad class of linear systems, i.e. linear-time-invariant (LTI), linear- time-varying (LTV) and linear-parameter-varying (LPV) systems. The interplay between the initial state, feedforward and feedback actions are elaborated in detail. The potential of the presented methodology is demonstrated through simulation examples.
Original language | English |
---|---|
Title of host publication | 2017 American Control Conference, ACC 2017, 24-26 May 2017, Seatlle, Washington |
Place of Publication | Piscataway |
Publisher | Institute of Electrical and Electronics Engineers |
Pages | 2387-2392 |
Number of pages | 6 |
ISBN (Electronic) | 978-1-5090-5992-8 |
ISBN (Print) | 978-1-5090-4583-9 |
DOIs | |
Publication status | Published - 29 Jun 2017 |
Event | 2017 American Control Conference (ACC 2017) - Sheraton Seattle Hotel, Seattle, United States Duration: 24 May 2017 → 26 May 2017 http://acc2017.a2c2.org/ |
Conference
Conference | 2017 American Control Conference (ACC 2017) |
---|---|
Abbreviated title | ACC 2017 |
Country/Territory | United States |
City | Seattle |
Period | 24/05/17 → 26/05/17 |
Internet address |