TY - JOUR
T1 - Reduction rules for reset/inhibitor nets
AU - Verbeek, H.M.W.
AU - Wynn, M.T.
AU - Aalst, van der, W.M.P.
AU - Hofstede, ter, A.H.M.
PY - 2010
Y1 - 2010
N2 - Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These extensions can be used to model cancellation and blocking. A reset arc allows a transition to remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a transition from being enabled if the place contains one or more tokens. While reset/inhibitor nets increase the expressive power of Petri nets, they also result in increased complexity of analysis techniques. One way of speeding up Petri net analysis is to apply reduction rules. Unfortunately, many of the rules defined for classical Petri nets do not hold in the presence of reset and/or inhibitor arcs. Moreover, new rules can be added. This is the first paper systematically presenting a comprehensive set of reduction rules for reset/inhibitor nets. These rules are liveness and boundedness preserving and are able to dramatically reduce models and their state spaces. It can be observed that most of the modeling languages used in practice have features related to cancellation and blocking. Therefore, this work is highly relevant for all kinds of application areas where analysis is currently intractable.
AB - Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These extensions can be used to model cancellation and blocking. A reset arc allows a transition to remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a transition from being enabled if the place contains one or more tokens. While reset/inhibitor nets increase the expressive power of Petri nets, they also result in increased complexity of analysis techniques. One way of speeding up Petri net analysis is to apply reduction rules. Unfortunately, many of the rules defined for classical Petri nets do not hold in the presence of reset and/or inhibitor arcs. Moreover, new rules can be added. This is the first paper systematically presenting a comprehensive set of reduction rules for reset/inhibitor nets. These rules are liveness and boundedness preserving and are able to dramatically reduce models and their state spaces. It can be observed that most of the modeling languages used in practice have features related to cancellation and blocking. Therefore, this work is highly relevant for all kinds of application areas where analysis is currently intractable.
U2 - 10.1016/j.jcss.2009.06.003
DO - 10.1016/j.jcss.2009.06.003
M3 - Article
SN - 0022-0000
VL - 76
SP - 125
EP - 143
JO - Journal of Computer and System Sciences
JF - Journal of Computer and System Sciences
IS - 2
ER -