Reduced structural connectivity between sensorimotor and language areas in rolandic epilepsy

R.M.H Besseling, J.F.A. Jansen, G.M. Overvliet, S.J.M. Kruijs, van der, S.C.M. Ebus, A. Louw, de, P.A.M. Hofman, J.S.H. Vles, A.P. Aldenkamp, W.H. Backes

Research output: Contribution to journalArticleAcademicpeer-review

32 Citations (Scopus)
140 Downloads (Pure)

Abstract

Introduction Rolandic epilepsy (RE) is a childhood epilepsy with centrotemporal (rolandic) spikes, that is increasingly associated with language impairment. In this study, we tested for a white matter (connectivity) correlate, employing diffusion weighted MRI and language testing. Methods Twenty-three children with RE and 23 matched controls (age: 8–14 years) underwent structural (T1-weighted) and diffusion-weighted MRI (b = 1200 s/mm2, 66 gradient directions) at 3T, as well as neuropsychological language testing. Combining tractography and a cortical segmentation derived from the T1-scan, the rolandic tract were reconstructed (pre- and postcentral gyri), and tract fractional anisotropy (FA) values were compared between patients and controls. Aberrant tracts were tested for correlations with language performance. Results Several reductions of tract FA were found in patients compared to controls, mostly in the left hemisphere; the most significant effects involved the left inferior frontal (p = 0.005) and supramarginal (p = 0.004) gyrus. In the patient group, lower tract FA values were correlated with lower language performance, among others for the connection between the left postcentral and inferior frontal gyrus (p = 0.043, R = 0.43). Conclusion In RE, structural connectivity is reduced for several connections involving the rolandic regions, from which the epileptiform activity originates. Most of these aberrant tracts involve the left (typically language mediating) hemisphere, notably the pars opercularis of the inferior frontal gyrus (Broca’s area) and the supramarginal gyrus (Wernicke’s area). For the former, reduced language performance for lower tract FA was found in the patients. These findings provide a first microstructural white matter correlate for language impairment in RE.
Original languageEnglish
Pages (from-to)8-12
Number of pages7
JournalPLoS ONE
Volume2013
Issue number23 dec
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'Reduced structural connectivity between sensorimotor and language areas in rolandic epilepsy'. Together they form a unique fingerprint.

Cite this