Recursive tilings and space-filling curves with little fragmentation

H.J. Haverkort

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademic

Abstract

This paper defines the Arrwwid number of a recursive tiling (or space-filling curve) as the smallest number a such that any ball Q can be covered by a tiles (or curve fragments) with total volume O(volume(Q)). Recursive tilings and space-filling curves with low Arrwwid numbers may be applied to optimise disk, memory or server access patterns when processing sets of points in Rd. This paper presents recursive tilings and space-filling curves with optimal Arrwwid numbers. When d >= 3, regular cube tilings and space-??lling curves cannot have optimal Arrwwid number; alternatives with better Arrwwid numbers are presented.
Original languageEnglish
Title of host publicationAbstracts 26th European Workshop on Computational Geometry (EuroCG 2010, Dortmund, Germany, March 22-24, 2010)
EditorsJ. Vahrenhold
Place of PublicationDortmund
PublisherTechnische Universität Dortmund
Pages185-188
Publication statusPublished - 2010
Event26th European Workshop on Computational Geometry (EuroCG 2010) - Dortmund
Duration: 22 Mar 201024 Mar 2010
Conference number: 26
http://eurocg.org/

Workshop

Workshop26th European Workshop on Computational Geometry (EuroCG 2010)
Abbreviated titleEuroCG 2010
CityDortmund
Period22/03/1024/03/10
Internet address

Fingerprint

Space-filling Curves
Tiling
Fragmentation
Curve
Tile
Set of points
Regular hexahedron
Fragment
Ball
Server
Optimise
Alternatives

Cite this

Haverkort, H. J. (2010). Recursive tilings and space-filling curves with little fragmentation. In J. Vahrenhold (Ed.), Abstracts 26th European Workshop on Computational Geometry (EuroCG 2010, Dortmund, Germany, March 22-24, 2010) (pp. 185-188). Dortmund: Technische Universität Dortmund.
Haverkort, H.J. / Recursive tilings and space-filling curves with little fragmentation. Abstracts 26th European Workshop on Computational Geometry (EuroCG 2010, Dortmund, Germany, March 22-24, 2010). editor / J. Vahrenhold. Dortmund : Technische Universität Dortmund, 2010. pp. 185-188
@inproceedings{09a8cbb6e3274678a197461a546605bb,
title = "Recursive tilings and space-filling curves with little fragmentation",
abstract = "This paper defines the Arrwwid number of a recursive tiling (or space-filling curve) as the smallest number a such that any ball Q can be covered by a tiles (or curve fragments) with total volume O(volume(Q)). Recursive tilings and space-filling curves with low Arrwwid numbers may be applied to optimise disk, memory or server access patterns when processing sets of points in Rd. This paper presents recursive tilings and space-filling curves with optimal Arrwwid numbers. When d >= 3, regular cube tilings and space-??lling curves cannot have optimal Arrwwid number; alternatives with better Arrwwid numbers are presented.",
author = "H.J. Haverkort",
year = "2010",
language = "English",
pages = "185--188",
editor = "J. Vahrenhold",
booktitle = "Abstracts 26th European Workshop on Computational Geometry (EuroCG 2010, Dortmund, Germany, March 22-24, 2010)",
publisher = "Technische Universit{\"a}t Dortmund",

}

Haverkort, HJ 2010, Recursive tilings and space-filling curves with little fragmentation. in J Vahrenhold (ed.), Abstracts 26th European Workshop on Computational Geometry (EuroCG 2010, Dortmund, Germany, March 22-24, 2010). Technische Universität Dortmund, Dortmund, pp. 185-188, 26th European Workshop on Computational Geometry (EuroCG 2010), Dortmund, 22/03/10.

Recursive tilings and space-filling curves with little fragmentation. / Haverkort, H.J.

Abstracts 26th European Workshop on Computational Geometry (EuroCG 2010, Dortmund, Germany, March 22-24, 2010). ed. / J. Vahrenhold. Dortmund : Technische Universität Dortmund, 2010. p. 185-188.

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademic

TY - GEN

T1 - Recursive tilings and space-filling curves with little fragmentation

AU - Haverkort, H.J.

PY - 2010

Y1 - 2010

N2 - This paper defines the Arrwwid number of a recursive tiling (or space-filling curve) as the smallest number a such that any ball Q can be covered by a tiles (or curve fragments) with total volume O(volume(Q)). Recursive tilings and space-filling curves with low Arrwwid numbers may be applied to optimise disk, memory or server access patterns when processing sets of points in Rd. This paper presents recursive tilings and space-filling curves with optimal Arrwwid numbers. When d >= 3, regular cube tilings and space-??lling curves cannot have optimal Arrwwid number; alternatives with better Arrwwid numbers are presented.

AB - This paper defines the Arrwwid number of a recursive tiling (or space-filling curve) as the smallest number a such that any ball Q can be covered by a tiles (or curve fragments) with total volume O(volume(Q)). Recursive tilings and space-filling curves with low Arrwwid numbers may be applied to optimise disk, memory or server access patterns when processing sets of points in Rd. This paper presents recursive tilings and space-filling curves with optimal Arrwwid numbers. When d >= 3, regular cube tilings and space-??lling curves cannot have optimal Arrwwid number; alternatives with better Arrwwid numbers are presented.

M3 - Conference contribution

SP - 185

EP - 188

BT - Abstracts 26th European Workshop on Computational Geometry (EuroCG 2010, Dortmund, Germany, March 22-24, 2010)

A2 - Vahrenhold, J.

PB - Technische Universität Dortmund

CY - Dortmund

ER -

Haverkort HJ. Recursive tilings and space-filling curves with little fragmentation. In Vahrenhold J, editor, Abstracts 26th European Workshop on Computational Geometry (EuroCG 2010, Dortmund, Germany, March 22-24, 2010). Dortmund: Technische Universität Dortmund. 2010. p. 185-188