Abstract
Due to the emerging bandwidth-hungry applications (e.g., high-quality video content), the traffic load may significantly vary in time across the access network. Therefore, the network operator should be capable of distributing the available bandwidth in a flexible manner in order to provide the end-user with an uninterrupted service. In this letter, we present the experimental results carried out on the testbed of a hybrid wavelength-division-multiplexing/time-division-multiplexing access network based on cost-efficient elements like an integrated optical add-drop multiplexer and a reflective electroabsorption modulator combined with a semiconductor optical amplifier which provides bandwidth on-demand. We successfully transmit simultaneous upstream and downstream traffic at 10 Gb/s/lambda (nonreturn-to-zero) over 27-km standard single-mode fiber in various configurations of four wavelengths.
Original language | English |
---|---|
Pages (from-to) | 1758-1760 |
Number of pages | 3 |
Journal | IEEE Photonics Technology Letters |
Volume | 21 |
Issue number | 23 |
DOIs | |
Publication status | Published - 2009 |