TY - GEN
T1 - Really fast syndrome-based hashing
AU - Bernstein, D.J.
AU - Lange, T.
AU - Peters, C.P.
AU - Schwabe, P.
PY - 2011
Y1 - 2011
N2 - The FSB (fast syndrome-based) hash function was submitted to the SHA-3 competition by Augot, Finiasz, Gaborit, Manuel, and Sendrier in 2008, after preliminary designs proposed in 2003, 2005, and 2007. Many FSB parameter choices were broken by Coron and Joux in 2004, Saarinen in 2007, and Fouque and Leurent in 2008, but the basic FSB idea appears to be secure, and the FSB submission remains unbroken. On the other hand, the FSB submission is also quite slow, and was not selected for the second round of the competition.
This paper introduces RFSB, an enhancement to FSB. In particular, this paper introduces the RFSB-509 compression function, RFSB with a particular set of parameters. RFSB-509, like the FSB-256 compression function, is designed to be used inside a 256-bit collision-resistant hash function: all known attack strategies cost more than 2128 to find collisions in RFSB-509. However, RFSB-509 is an order of magnitude faster than FSB-256. On a single core of a Core 2 Quad CPU, RFSB-509 runs at 13.62 cycles/byte: faster than SHA-256, faster than 6 of the 14 secondround SHA-3 candidates, and faster than 2 of the 5 SHA-3 finalists.
AB - The FSB (fast syndrome-based) hash function was submitted to the SHA-3 competition by Augot, Finiasz, Gaborit, Manuel, and Sendrier in 2008, after preliminary designs proposed in 2003, 2005, and 2007. Many FSB parameter choices were broken by Coron and Joux in 2004, Saarinen in 2007, and Fouque and Leurent in 2008, but the basic FSB idea appears to be secure, and the FSB submission remains unbroken. On the other hand, the FSB submission is also quite slow, and was not selected for the second round of the competition.
This paper introduces RFSB, an enhancement to FSB. In particular, this paper introduces the RFSB-509 compression function, RFSB with a particular set of parameters. RFSB-509, like the FSB-256 compression function, is designed to be used inside a 256-bit collision-resistant hash function: all known attack strategies cost more than 2128 to find collisions in RFSB-509. However, RFSB-509 is an order of magnitude faster than FSB-256. On a single core of a Core 2 Quad CPU, RFSB-509 runs at 13.62 cycles/byte: faster than SHA-256, faster than 6 of the 14 secondround SHA-3 candidates, and faster than 2 of the 5 SHA-3 finalists.
U2 - 10.1007/978-3-642-21969-6_9
DO - 10.1007/978-3-642-21969-6_9
M3 - Conference contribution
SN - 978-3-642-21968-9
T3 - Lecture Notes in Computer Science
SP - 134
EP - 152
BT - Progress in Cryptology - AfricaCrypt 2011 (4th International Conference on Cryptology in Africa, Dakar, Senegal, July 5-7, 2011. Proceedings)
A2 - Nitaj, A.
A2 - Pointcheval, D.
PB - Springer
CY - Berlin
ER -