TY - JOUR
T1 - Real-time multiple people tracking for automatic group-behavior evaluation in delivery simulation training
AU - Han, Jungong
AU - With, de, P.H.N.
PY - 2010
Y1 - 2010
N2 - This paper aims at generating an automated way to evaluate the team-behavior of trainees in a delivery simulation course using video-processing techniques with emphasis on multiple people tracking. The paper is composed of two interacting, but clearly separated stages: moving people segmentation and multiple people tracking. At people segmentation stage, the combination of the Gaussian Mixture Model (GMM) and the Dynamic Markov Random Fields (DMRF) technique helps to extract the foreground pixels. For a better extraction of the human silhouettes, the energy function of DMRF is extended with texture information. At multiple people tracking stage, we concentrate on solving human-occlusion problem caused by interacting persons based on silhouette data and a non-linear regression model. Our model effectively transfers the person location problem during the occlusion into the finding of the local maximum points on a smooth curve, so that visual persons in the partial or complete occlusion can still be precisely captured. We have compared our algorithm with two other popular tracking algorithms: mean-shift and particle-filter. Experimental results reveal that the correctness of our method is much higher than the mean-shift algorithm and slightly lower than a particle-filter, however, with the major benefit of being a factor of 10–15 faster in computing.
AB - This paper aims at generating an automated way to evaluate the team-behavior of trainees in a delivery simulation course using video-processing techniques with emphasis on multiple people tracking. The paper is composed of two interacting, but clearly separated stages: moving people segmentation and multiple people tracking. At people segmentation stage, the combination of the Gaussian Mixture Model (GMM) and the Dynamic Markov Random Fields (DMRF) technique helps to extract the foreground pixels. For a better extraction of the human silhouettes, the energy function of DMRF is extended with texture information. At multiple people tracking stage, we concentrate on solving human-occlusion problem caused by interacting persons based on silhouette data and a non-linear regression model. Our model effectively transfers the person location problem during the occlusion into the finding of the local maximum points on a smooth curve, so that visual persons in the partial or complete occlusion can still be precisely captured. We have compared our algorithm with two other popular tracking algorithms: mean-shift and particle-filter. Experimental results reveal that the correctness of our method is much higher than the mean-shift algorithm and slightly lower than a particle-filter, however, with the major benefit of being a factor of 10–15 faster in computing.
U2 - 10.1007/s11042-009-0423-4
DO - 10.1007/s11042-009-0423-4
M3 - Article
SN - 1380-7501
VL - 51
SP - 913
EP - 933
JO - Multimedia Tools and Applications
JF - Multimedia Tools and Applications
IS - 3
ER -