Abstract
The wireless communication channel around/in the human body is a difficult propagation environment. This paper presents measurement and simulation results to characterize such a channel. A fluid human body model is employed to emulate the inside of a human body. The paper details the fluid human model and path loss model parameters at 400 MHz (MICS band). It is shown that the simulated and measured results are in a close agreement, for instance at a distance of 20 cm and a implant depth of 10 cm, the measurement results in a path loss of -42.1 dB and the simulation in -43.0 dB. The effect of human model shape on measured path loss is analyzed. Furthermore, simulations are employed to characterize this effect. Using the path loss model a top-level link budget is evaluated to determine the feasibility of a given implant device compliant to IEEE802.15.6-WBAN-400 MHz standard.
Original language | English |
---|---|
Title of host publication | IEEE Wireless Communications and Networking Conference, WCNC |
Place of Publication | Piscataway |
Publisher | Institute of Electrical and Electronics Engineers |
Pages | 293-298 |
Number of pages | 6 |
ISBN (Electronic) | 978-1-4799-3083-8 |
DOIs | |
Publication status | Published - 1 Jan 2014 |
Event | 2014 IEEE Wireless Communications and Networking Conference, WCNC 2014 - Istanbul, Turkey Duration: 6 Apr 2014 → 9 Apr 2014 |
Conference
Conference | 2014 IEEE Wireless Communications and Networking Conference, WCNC 2014 |
---|---|
Country/Territory | Turkey |
City | Istanbul |
Period | 6/04/14 → 9/04/14 |