Quantum photonic integrated circuits based on tunable dots and tunable cavities

M. Petruzzella, S. Birindelli, F. Pagliano, D. Pellegrino, Z. Zobenica, Lianhe Li, E.H. Linfield, A. Fiore

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)
102 Downloads (Pure)


Quantum photonic integrated circuits hold great potential as a novel class of semiconductor technologies that exploit the evolution of a quantum state of light to manipulate information. Quantum dots encapsulated in photonic crystal structures are promising single-photon sources that can be integrated within these circuits. However, the unavoidable energy mismatch between distant cavities and dots, along with the difficulties in coupling to a waveguide network, has hampered the implementation of circuits manipulating single photons simultaneously generated by remote sources. Here we present a waveguide architecture that combines electromechanical actuation and Stark-tuning to reconfigure the state of distinct cavity-emitter nodes on a chip. The Purcell-enhancement from an electrically controlled exciton coupled to a ridge waveguide is reported. Besides, using this platform, we implement an integrated Hanbury-Twiss and Brown experiment with a source and a splitter on the same chip. These results open new avenues to scale the number of indistinguishable single photons produced on-demand by distinct emitters.

Original languageEnglish
Article number106103
Number of pages14
JournalAPL Photonics
Issue number10
Publication statusPublished - Oct 2018


Dive into the research topics of 'Quantum photonic integrated circuits based on tunable dots and tunable cavities'. Together they form a unique fingerprint.

Cite this